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In a finite-size Abelian sandpile model, extreme avalanches are repelling each other. Taking a time series of
the avalanche size and using a decision variable derived from that, we predict the occurrence of a particularly
large avalanche in the next time step. The larger the magnitude of these target avalanches, the better is their
predictability. The predictability which is based on a finite-size effect, is discussed as a function of the system
size.

DOI: 10.1103/PhysRevE.80.026124 PACS number�s�: 05.65.�b, 05.45.Tp, 45.70.�n, 89.75.�k

Extreme events have received considerable interest over
the past years �1,2� for two reasons: as natural events, their
extremity is linked to large impact in particular on human
society due to their mostly destructive character. From the
more fundamental point of view, extreme events are large
deviations due to intrinsic fluctuations of complex systems.
Therefore, in the framework of complex dynamics, one
would like to understand and classify possible underlying
mechanisms for huge deviations and then derive statistical
properties about recurrences and magnitudes. One prominent
class of complex dynamics which is capable of generating
arbitrarily large events without correspondingly strong exter-
nal perturbations is SOC systems. Self-organized criticality
�SOC� was introduced by Bak, Tang, and Wiesenfeld �3� as a
dynamical mechanism to explain the abundance of power
laws in nature. An open out of equilibrium system is driving
itself into a critical state without fine tuning of some control
parameter, by a balance of loading or stress accumulation
and discharging or stress release. In the critical state, the
magnitude distribution of stress release in a single event �to
be properly defined� follows a power law, i.e., is scale free.
Relevant characteristics for such events are not only the
frequency-size distribution including a potential maximal
event size, but also temporal and spatial correlations. Such
correlations are the source of information for the attempt to
forecast particular events, as it is routine for weather �e.g.,
hurricanes�, and as it is urgently desired for earthquakes �4�.
It has been suggested that seismicity might indeed stem from
SOC-type dynamics �5,6�. In fact, the attempt to predict
earthquakes, being events of strong seismic activity of the
earth’s crust, on the basis of past observed seismic activity
�7� has inspired our work. Moreover, precursors known from
earthquake prediction have already previously been applied
to avalanches in sandpile models, which constitute the origi-
nal SOC systems �8,9�. Avalanche predictions have also been
studied in granular matter experiments �10,11�. In this paper,
we show that the additional knowledge of internal system
parameters such as sandpile height, clusterization or local
activity previously used for avalanche prediction is not nec-
essary. In fact, due to temporal finite-size effects in the sys-
tem, predictions of similar quality can be issued based on the
avalanche time series data alone, improving practical appli-
cability.

The Abelian sandpile model �3,12� used in this paper
mimics a sandpile, where sand grains randomly drop onto a

heap of sand and cause avalanches whenever the local height
becomes too large. It is commonly accepted that in the ther-
modynamic limit, this system is critical. On a square lattice
of size L�L, random integer variables zij are defined which
can, in the stable state, attain values zij � �0,1 ,2 ,3�. At each
time step, a sand grain is added by randomly choosing a pair
�i , j� and incrementing zij by 1. If any zij exceeds 3, then
sand grains are redistributed,

zij → zij − 4 zi�j� → zi�j� + 1 �1�

for �i� , j��= �i , j�1� and �i� , j��= �i�1, j�.
This rule is applied repetitively until all zij �3. During

such a sequence of updates which is called avalanche no new
grains are added, so the avalanche occupies no extra time
step. The avalanche size si is measured as the number of
topplings, i.e., as the total number of involved system sites
with their multiplicity.1 In the thermodynamic limit L→�
the magnitude-frequency distribution p�s� of an avalanche of
size s follows a power law p�s��s−� with � between −1.05
and −1.293 depending on the system size used in the simu-
lations �13–16�. This does not only imply that for L→�
there is nothing like a “largest possible avalanche,” but that
also the mean avalanche size is infinite. In the finite-sized
system, the largest possible avalanche has the size smax
=1 /6·L�L+1��L+2�, and the power law has a cutoff already
at sizes L2 /2 �17�. Hence, there is a finite largest avalanche
and a finite mean.

More importantly, the temporal succession of avalanches
is also affected by the finiteness of the system. In this paper
we want to study predictability of extreme events based on
this fact. To do so, we generate a time series of avalanche
sizes �si�, i=1, . . . ,N, called the observation series, from Eq.
�1� for N=2�108 time steps �i.e., N added sand grains�, after
discarding a transient during which the system acquires criti-
cality. In the thermodynamic limit, successive avalanches are
independent of each other and the time series of avalanche
sizes si is uncorrelated. Consequently, the recurrence time
distribution, i.e., the distribution of time intervals in between
two successive avalanches, is an exponential, as mentioned
in passing in several previous publications �18–20�. It can

1Other definitions of avalanche size are in use, e.g., the number of
sand grains dissipated over the border �10�.
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easily be verified by numerical simulations where the tem-
poral properties of the thermodynamic limit are reasonably
well approximated by the behavior of the small avalanches
that form the majority of events and are not influenced by the
system boundary. When observing the recurrence time distri-
bution of very large avalanches in finite systems, one ob-
serves a suppression of short return times when compared to
the exponential distribution of recurrences of small events. A
recurrence time distribution for large avalanches is shown in
Fig. 1. The figure also shows that with surrogate data ob-
tained through a random reshuffling of the observation series
�si�, the recurrence time distribution remains exponential as
expected for temporally independent events even if only
large avalanches are considered. The observed suppression
therefore stems from temporal correlations between large
events. In a previous publication �17� we analyzed finite-size
effects in more detail and showed that this is indeed one of
them: an extremely large avalanche can cause a relaxation of
the system away from the critical state so that many added
sand grains are needed until the system has rebuilt itself and
can once again create avalanches of a similar or larger size.
In this paper, we show that this rather weak repulsion of
extreme avalanches in finite SOC systems can be used for
their prediction, using a suitable decision variable.

For a realistic setting, we base our predictions solely on
the knowledge of the time series of avalanche sizes, i.e., the
observation series which was described above. From it we
construct an event series �Xi�, i=1, . . . ,N such that Xi=1 if
si	
 and Xi=0 else, i.e., a Boolean series that considers all
those avalanches as events which exceed a predefined mag-
nitude 
. Only using information from the past, we want to
forecast whether the next value of the event variable is 1, i.e.,
whether the next avalanche exceeds the magnitude 
. To do
so, at each time step i we construct a decision variable

yi = �
k=1

i

aksi−k, 0 � a � 1, �2�

which is equivalent to

yi+1 = ayi + asi �3�

and thus to a linear filter also known as AR�1� process. yi is
independent of sk for k� i, hence when predicting the value
of Xi on the basis of the value of yi, causality is respected.
The quality of the predictions based on yi depends on the
time scale expressed by the parameter a in Eq. �2�. A suitable
choice, independently of 
, is a=exp�−1 /T�L�� with T�L
=64�=225, T�L=128�=450, T�L=256�=900.

A necessary condition for a decision variable to support
predictability is that the conditional probability P�X=1 �y�,
i.e., the probability for an event to happen given a specific
value of the decision variable y, has at least one significant
maximum in y. A numerical estimate of P�X=1 �y� obtained
by binning and counting of pairs �Xi ,yi� from our simulated
time series data is shown in Fig. 2 on a semilogarithmic scale
for different values of the minimal event magnitude 
 and a
system size L=64. Since the average 	P�X=1 �y�
y is the
event rate, these probabilities are smaller the larger 
 is. The
conditional probabilities can be determined only on the ob-
served range of y �which appears shortened for larger thresh-
olds 
 in Fig. 2 due to finite sampling and omitting of data
for those values of y where too few avalanches occurred in
total�, but are not subject to any boundary condition such as
being zero outside this range. The numerical results are con-
sistent with an exponential distribution P�X=1 �y��exp�
−b�
�y�, where b�
��c
 /smax is an 
-dependent decay rate
where the numerical constant c depends on L �c�0.0002 for
L=64�. Therefore, all curves have a trivial maximum at the
smallest observed y value, i.e., when only small avalanches
have occurred during the past period considered in the deci-
sion variable. This reflects the temporal repulsion of extreme
events underlying our predictions. As expected, the smaller
the minimal event magnitude 
, the less pronounced the
maximum is, since the weak correlations are a finite-size
effect which diminishes if smaller events are considered. For
even smaller 
, this conditional probability approaches a
constant, which is also obtained for an analysis of the surro-
gate data and which implies that the sequence of avalanche
sizes has no predictive power, and predictions cannot be
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FIG. 1. Recurrence time distribution for L=64 and 
=10 000
for the observation series and the surrogate data. The distribution
was truncated at a time of 10 000 added sand grains to enhance
visibility of the depression for small times.
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FIG. 2. �Color online� Conditional probability P�X=1 �y� for the
system size L=64 as a function of the decision variable y, for
events exceeding 1%, 2%, 5%, 10%, 15%, 20%, 25%, 30%, and
35% of the maximal avalanche size smax �from top to bottom�.
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made better than chance. This will be verified by an analysis
of the prediction quality below.

The actual prediction is made by applying a threshold to
predicted probabilities of an event to follow. A probabilistic
predictor based on yi is a map yi� p̂i, p̂i� �0,1�. As a con-
sequence of the Neyman-Pearson Lemma �21� and as dis-
cussed in �22�, the optimal such predictor is p̂i= P�X=1 �yi�,
i.e., using the conditional probability of event and decision
variable of the stochastic process under study. A simple
threshold converts this probabilistic prediction into a deter-

ministic prediction yi� X̂i via

X̂i = �1: if P�X = 1�yi� 	 pc,

0: else,
 �4�

where X̂i� �0,1� is the prediction of the event variable. The
value of the parameter pc is freely adjustable to determine

the total alarm rate. Comparing X̂i and Xi allows one to
verify or falsify one’s prediction. This map optimizes the
prediction for a given decision variable y with respect to the
receiver operating characteristics �ROC� analysis which will
be discussed below. Since for the SOC model chosen in this
paper the probability distribution P�X=1 �y� is a priori un-
known, we estimate it by construction of a histogram from
the first half of the avalanche time series data �training set�
�see Fig. 2�. The decision variable yi is thereafter calculated
at each time step of the second half of the avalanche time
series �test set—predictions are issued only after the first
10 000 time steps of the test set to ensure that no transient
effects distort the prediction�. This keeps the predictions
strictly out of sample.

In Fig. 3 we show an example of how the decision vari-

able y and the predicted probability for an event to happen in
the next time step, p̂= P�X=1 �y�, evolve in the last 25 time
steps before and immediately after ten exemplarily chosen
large events. As can be seen, the decision variable y overall
decreases as the contribution of the last large event is multi-
plied with an increasingly small prefactor ak as it lies farther
and farther in the past. Once the event has taken place, the
decision variable y then jumps to much larger values through
the addition of a large avalanche size and thereby suppresses
the prediction of large probabilities immediately after the
event has taken place. This is reflected in the predicted prob-
ability of an extreme event to happen, which jumps to zero
once the event has taken place. Before the event, it overall
increases and can be quite large for some time, so that for

suitable values of pc a sequence of alarms X̂i=1 is given. As
can also be seen from Fig. 3, the conditional probability p̂
= P�X=1 �y� is subject to significant fluctuations giving rise
to prediction errors, which shall be studied in the following.

Since extreme events are rare, the scoring of the predic-
tion skill should not depend explicitly on the rate of events.

For binary predictions X̂i� �0,1� the prediction of events
becomes a classification task, with two types of errors: miss-
ing an event, and giving a false alarm. We therefore choose
the receiver operating characteristics �ROC� �23� as a method
to analyze prediction quality. This is a plot of the hit rate
versus the false alarm rate, as a function of the total rate of
alarms, which here is tuned by the threshold pc. For pc

→maxy P�X=1 �y�, the condition for X̂i=1 is almost never
satisfied, so that both hit rate and false alarm rate are zero.
For very small values of pc, both rates tend to unity. Only if
in between the hit rate exceeds the false alarm rate, the pre-

dictor is useful. A random prediction of X̂i would generate
equal hit and alarm rate, i.e., the diagonal in the ROC plot is
the benchmark.

In Fig. 4 we report ROC curves for predictions using Eq.
�4� on avalanche sequences for system sizes L=64 and L
=256 as well as surrogate data for L=64 and events exceed-
ing different magnitudes 
. The ROC plot shows two strik-
ing results: The larger the magnitude of the target events,
limited by 
 from below, the better is the predictability. The

0

5000

10000

15000

20000

25000

av
al

an
ch

e
si

ze
s t

20000

30000

40000

50000

de
ci

si
on

va
ria

be
ly

0

0.0004

0.0008

0.0012

-25 -20 -15 -10 -5 0 5 10

P
(X

=
1|

y)

relative time t

(b)

(a)

(c)

FIG. 3. Illustration of probabilistic predictions �superposition of
ten examples�: at relative time 0, an extreme event takes place �top
panel: avalanche series si�. The decision variable before the event
drops to small values �medium panel�, whereas the predicted prob-
ability for the event to happen is high �bottom panel�.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

hi
tr

at
e

false alarm rate

L= 64
L=256

surrogates L=64

η = 1% smax

η = 2% smax

η = 5% smax

η = 25% smax

η = 30% smax

FIG. 4. ROC plots for the prediction of extreme avalanches for
different minimal event magnitudes 
, comparing L=64 and L
=256 and the surrogate data for L=64.

PREDICTING EXTREME AVALANCHES IN SELF-… PHYSICAL REVIEW E 80, 026124 �2009�

026124-3



predictability for given 
 does not depend on the system size
L, if 
 is defined as a fraction of the maximal avalanche size
smax�L�, showing that predictability is indeed based on a
finite-size effect since the relative frequency of the events is
not the influencing factor. Choosing 
�smax, each two
curves for L=64 and L=256 are indeed almost identical ex-
cept for statistical fluctuations for large 
. In contrast, as
expected, the surrogate data show no predictability regard-
less of the chosen threshold 
, always lying along the diag-
onal in the ROC plot, except for statistical fluctuations.

Different prediction algorithms for extreme avalanches in
the BTW Abelian sandpile model were already implemented
previously. The most notable analysis of the predictability on
a sandpile was carried out by Shapoval and Shnirman �9�.
Instead of the time series of avalanche sizes �si�, in �9� two
different internal variables of the sandpile �average height,
size of critical clusters� are used as inputs �decision vari-
ables�. Anomalous values of these variables, so-called pre-
cursors, indicate that an avalanche is likely to follow. If these
monitored variables are found to be close to the previously
identified precursor, an alarm is given. Shapoval and Shnir-
man evaluate these predictions using the normalized error
sum  which is defined as the sum of the rate of unpredicted
avalanches and the total alarm rate. For predictions that are
no worse than chance, � �0,1� and the quality of prediction
improves the smaller  is.

The error sum  is a possible representative of a whole
ROC curve. For small event rates it is closely related to its
closest approach to the ideal point �0,1�, known as
Kolmogorov-Smirnov distance. For comparison with �9�, we
therefore issued predictions using for every pair �L ,
� the
value of pc in Eq. �4�, for which the ROC curve is closest to
the ideal point �0,1�. We report the error sums  in Fig. 5 for
different lower event magnitudes 
 �expressed by the corre-
sponding event rate� for three different system sizes L=64,

L=128, and L=256. The symbols show results taken from
Fig. 2 in �9� for a system size of L=256 and an implemen-
tation of the average height precursor which resulted in the
smallest prediction error sum. As can be seen, the prediction
quality compares rather well for equal system size. However,
we attain this level of predictability using only past ava-
lanche size data, no knowledge of other internal variables is
required.

Figure 5 seems to indicate that smaller systems have a
higher predictability, which would be in contrast to the ROC
curves of Fig. 4. However, the symbols plotted on the curves
in Fig. 5 correspond to specific fractions of the maximal
avalanche size between 1% and 35% �from large to small
event rates; for L=256 too few events exist for 
=0.35smax
so this point was left out�. Except for statistical fluctuations
for small event rates which mirror the ROC curves, the
points corresponding to the same fraction also show the same
error sum, i.e., they form triples of identical  values. There-
fore, this confirms that predictability is determined by the
avalanche size in relation to its maximal possible value
smax�L� and not by their rates of occurrence. If, however, one
wishes to predict the largest x percent of events in a system,
then indeed predictability decreases with increasing system
size, since the rate of events exceeding a fixed fraction of
smax�L� decreases approximately with L−2.

We have presented predictions of large avalanches based
on the joint distribution of events and a decision variable
which is solely derived from past avalanche data. Previous
work employed additional internal system parameters as de-
cision variables �8,9�, which reduce applicability in practical
prediction tasks, where often internal system states are not
measurable. This work presents three relevant results: first,
particularly large events in a close to SOC system can be
predicted on the basis of past observations. Second, the pre-
dictive power stems from temporal correlations which are
pure finite-size effects, i.e., in the infinite system size limit
predictability disappears as all avalanches become indepen-
dent of each other. Third, under variation of system size pre-
dictability persists, if the magnitude 
 used to define extreme
events is scaled linearly in the maximal possible avalanche
size. However, the rate of occurrence of such large events
decreases dramatically with increasing system size. As a con-
sequence of the relevance of finite-size effects, events are the
better predictable the larger they are. Considering that natu-
ral systems which are candidates for showing SOC-like be-
havior are finite, our results suggest to search for finite-size
effects in time series recordings such as seismic activity or
fracture. However, current literature indicates that both large
earthquakes �24� and large events in an earthquake model of
SOC �25� are clustered rather than evenly spread so the tem-
poral correlations in their occurrence seem to stem from
mechanisms different from the finite-size effects in the Abe-
lian sandpile model.
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